

PROBLEM?

Humans are great liars but poor lie detectors.

(Ability of humans to detect deception without any special aids is around 54%¹)

V. Gupta, M. Agarwal, M. Arora, T. Chakraborty, R. Singh and M. Vatsa, "Bag-of-Lies: A Multimodal Dataset for Deception Detection," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 83-90, doi: 10.1109/CVPRW.2019.00016.

- Requirement of specialized personnel
- Invasive by nature²
- Not Scalable (expensive and human presence required)
- **Ethical Concerns** ullet

[2] Saxe, L., Dougherty, D., & Cross, T. (1985). The validity of polygraph testing: Scientific analysis and public controversy. American Psychologist, 40(3), 355.

Polygraphs?

DECEPTION DETECTION

using non-Intrusive Methods

Chaitanya Modi, Hibah Ihsan Muhammad, Subham Jalan

Healthcare

Corporate

Verify patient testimony

Verify credentials

Education

Academic Dishonesty

Literature Survey

Bag-of-Lies: A Multimodal Dataset for Deception Detection¹

[1] V. Gupta, M. Agarwal, M. Arora, T. Chakraborty, R. Singh and M. Vatsa, "Bag-of-Lies: A Multimodal Dataset for Deception Detection," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 83-90, doi: 10.1109/CVPRW.2019.00016.

Methodology:

individual models working on different modalities

Observations:

- Limited set of features (e.g. only LBP for video)
- Weighted late fusion (11-fold cross validation)

Performance Metric:

Accuracy (all modalities): 66.17%

Analysis:

- Gaze can be extracted from video
- Neural Networks can be tried for higher accuracy

Proposed a late fusion model combining predictions from

High-level Features for Multimodal Deception Detection in Videos²

[2] R. Rill-García, H. J. Escalante, L. Villaseñor-Pineda and V. Reyes-Meza, "High-Level Features" for Multimodal Deception Detection in Videos," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 1565-1573, doi: 10.1109/CVPRW.2019.00198.

Methodology:

Studies different high-level features that can be extracted from video, audio, and text using open-source tool and their fusion techniques.

Observations:

- Late fusion outperformed early fusion (0.05AUC)
- Hyperparameter tuning not done

Performance Metric:

AUC (all modalities): 67%

Analysis:

- embeddings

• Variable-length sequences can be converted to statistical

• OpenFace (library) can be used to extract more video features. • Gaze is backed by research for deception detection. (>0.5AUC)

Lie Detection using Speech Processing Techniques³

[3] E. P. Fathima Bareeda, S. Mohan, and K. V. Ahammed Muneer, "Lie Detection using Speech Processing Techniques," Journal of physics. Conference series, vol. 1921, no. 1, pp. 012028-012028, May 2021, doi: https://doi.org/10.1088/1742-6596/1921/1/012028.

Methodology:

Uses MFCC from speech signals and SVM classifier for lie detection in isolated speech utterances.

Observations:

- Only MFCCs were extracted

Performance Metric:

Accuracy (Audio): 81.48%

Analysis:

- overfitting.
- More features could be extracted.

• Small dataset (161) may limit model generalization.

• Dimensionality reduction can be done using PCA to avoid

Multimodal Deception Detection Using Real-Life Trial Data⁴

Individual Feature Performance: Accuracy (%) and AUC Scores											
Feature Set (dimension)	SVM		RF		NN						
	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC					
Visual											
Facial displays (32) Hand gestures (7) All visual (39)	$\begin{array}{c} 76.27 \pm \ 0.00 \\ 50.28 \pm 3.53 \\ 58.19 \pm 0.98 \end{array}$	0.8581 0.7232 0.8641	$\begin{array}{c} 76.27 \pm 1.69 \\ \textbf{64.97} \pm 3.91 \\ 77.40 \pm 0.98 \end{array}$	0.9270 0.6671 0.9187	$\begin{array}{c} \textbf{80.79} \pm 0.98 \\ 61.58 \pm 0.98 \\ \textbf{78.53} \pm 1.96 \end{array}$	0.9416 0.6930 0.9377					
Ac	coustic										
Pitch (std- f_0) (1) Pitch (mean- f_0) (1) Sil.Sp.Hist (50) All Acoustic (52)	$\begin{array}{c} 61.58 \pm 0.98 \\ 54.24 \pm 1.69 \\ 57.63 \pm 0.00 \\ 56.50 \pm 2.59 \end{array}$	0.6507 0.5223 0.4159 0.5864	$\begin{array}{c} \textbf{71.19} \pm 3.39 \\ 53.11 \pm 0.98 \\ \textbf{59.32} \pm 2.94 \\ \textbf{63.28} \pm 0.98 \end{array}$	0.7939 0.5465 0.7069 0.7059	$\begin{array}{c} 51.41 \pm 0.98 \\ \textbf{61.02} \pm 0.00 \\ 55.93 \pm 1.69 \\ \textbf{61.02} \pm 4.48 \end{array}$	0.7427 0.5235 0.6483 0.6589					
Lin	Linguistic										
Unigrams (134) Unigrams - LIWC (100) All Linguistic (234)	$\begin{array}{c} 53.11 \pm 1.96 \\ 52.54 \pm 4.48 \\ 53.11 \pm 4.27 \end{array}$	0.7275 0.5906 0.6765	$\begin{array}{c} {\bf 64.41} \pm {\bf 4.48} \\ {\bf 63.84} \pm {\bf 2.59} \\ {\bf 61.58} \pm {\bf 2.59} \end{array}$	0.6173 0.6764 0.6605	$\begin{array}{c} 63.28 \pm 0.98 \\ 55.93 \pm 1.69 \\ 57.63 \pm 1.69 \end{array}$	0.7651 0.7729 0.7655					

[4] U. M. Sen, V. Perez-Rosas, B. Yanikoglu, M. Abouelenien, M. Burzo and R. Mihalcea, "Multimodal Deception Detection using Real-Life Trial Data," in IEEE Transactions on Affective Computing, vol. 13, no. 1, pp. 306-319, 2022.

Methodology:

Uses lingiustic, visual and acoustic features on real life deception detection by fusing the three modalities.

Observations:

- Meant for High Stake deception detection

Performance Metric:

Accuracy (all modalities): 84.18%

Analysis:

• Neural network worked the best with 8055 number of words.

• RF and SVM can be used for transcript classification. Unigrams can be extracted for transcript modality

Dataset

- Procured from IIIT-Delhi⁵
- Modalities Video, EEG, Gaze, Audio
- Specialized equipment (Emotiv EPOC+EEG, Gazepoint GP3)

[5] V. Gupta, M. Agarwal, M. Arora, T. Chakraborty, R. Singh and M. Vatsa, "Bag-of-Lies: A Multimodal Dataset for Deception Detection," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 83-90, doi: 10.1109/CVPRW.2019.00016.

Dataset

Experimental Setup:

- Participants shown 6-10 images
- Asked to describe final image
- **Natural** choice of deception!

Provides a non-hypothetical deception scenario for casual deceptions

Sample Images

Photo Masked

Dataset

Properties:

- 325 samples 162 (L) + 163 (T)
- 10 females and 25 males
- Model performed 2.3% better on males
- Thick hair obstruction

Ethical Considerations:

- control

• Restricted Dataset

• Secure server - access

Data Preprocessing

Step 1: Extraction of Transcript from Audio

Original Number of Data points: 325

Whisper v3

Number of Data Points after extracting Transcript

Step 2: Creation of a Dataframe

Original Dataframe

Data Masked

Preprocessed Dataframe

Data Masked

Basic Preprocessing

- Lowercasing
- Removing Punctuation
- Removing Stopwords
- Handling Special Characters
- Removing HTML Tags and URLs

Transcripts

Step 3: Make a Cosine similarity Matrix and Plot a histogram

Similarity Matrix

[[1.	0.	0.1490712		0.	0.	0.11111111	L]
[0.	1.	0.		0.14285714	0.	0.]
[0.1490712	0.	1.	• • •	0.	0.	0.]
•	•••							
[0.	0.14285714	0.		1.	0.	0.12598816	5]
[0.	0.	0.		0.	1.	0.]
[0.11111111	0.	0.		0.12598816	0.	1.]]

Step 4: Decide a Threshold according to the Histogram and filter the df

Final Filtered Dataframe shape: (205,1)

resi	ult
0	124
1	81

Transcripts

Step 5: Feature Extraction

Bag of Words(BOW)

Bag of Words (BoW): [[0000000101000101010120001000] [101101000011100001011001111] [01001010100000000101010110000]]

N-grams

Transcripts

TF-IDF

TF	-IDF:					
[[0.	0.	0.	0.	0.	0.
	0.	0.35413578	0.	0.35413578	0.	0.
	0.	0.35413578	0.	0.35413578	0.	0.35413578
	0.	0.35413578	0.41831659	0.	0.	0.
	0.26932939	0.	0.	0.]	
[0.27210883	0.	0.27210883	0.27210883	0.	0.27210883
	0.	0.	0.	0.	0.27210883	0.27210883
	0.27210883	0.	0.27210883	0.	0.	0.
	0.20694578	0.	0.16071186	0.27210883	0.	0.
	0.20694578	0.27210883	0.27210883	0.27210883]	
[0.	0.35517252	0.	0.	0.35517252	0.
	0.35517252	0.	0.35517252	0.	0.	0.
	0.	0.	0.	0.	0.35517252	0.
	0.27011786	0.	0.20977061	0.	0.35517252	0.35517252
	0.	0.	0.	0.]]	

Word2Vec

Word2Vec:			
[8.3474135e-03	-5.7207549e-04	-9.4375769e-03	4.7827936e-03
-6.0445508e-03	6.6838926e-03	5.3725867e-03	-5.0468231e-03
2.5687546e-03	5.4189041e-03	-3.5865146e-03	-1.5144218e-03
9.1719013e-03	9.0625333e-03	-9.3910722e-03	7.5650970e-03
9.8875528e-03	-2.8391804e-03	2.4573463e-03	-2.8026837e-03
8.6430376e-03	-2.8467341e-04	5.6364359e-03	9.2138294e-03
4.1098148e-03	-7.1207187e-03	-1.9234006e-03	9.7789941e-04
2.0326125e-03	2.9556018e-03	9.4502280e-03	4.4002603e-03
9.9119144e-03	-8.6575756e-03	-5.7540201e-03	1.9874072e-03
3.6548518e-03	-9.9221768e-04	-6.9129714e-03	-3.2113763e-03
-8.5284319e-03	9.4111022e-03	3.7243692e-03	-7.8788400e-03
3.1879896e-03	4.1732127e-03	-5.6372448e-03	-5.9139454e-03
1.0364689e-03	8.9602843e-03	-9.6455161e-03	5.6382296e-06
-6.8661813e-03	-9.3362684e-04	3.0388411e-03	-5.0303270e-03
-2.7774265e-03	6.7519158e-04	-6.3632787e-03	7.2843963e-03
4.3802024e-03	-8.5593462e-03	-2.1482927e-03	3.1643168e-03
-8.3279693e-03	-7.0694438e-03	-8.4527740e-03	-5.4971008e-03
8.8549480e-03	7.0773163e-03	2.8861596e-03	-8.5535981e-03

Step 1: Data Familiarization

Step 2: Extract Features (OpenFace)

Extracted features overlay

fra	me,	face_id,	timest	amp,	confidence	, success,	gaze_0_x, ga	ze_0_y, gaze	_0_z, gaze_:	1_x, gaze_1_y	y, gaze_	1_z, gaz	e_angle_x,
1,	0,	0.000,	0.98,	1,	0.156237,	0.498489,	-0.852701,	-0.155730,	0.515231,	-0.842784,	0.000,	0.539,	259.6, 2
2,	0,	0.033,	0.98,	1,	0.146927,	0.497123,	-0.855150,	-0.158016,	0.487946,	-0.858452,	-0.006,	0.522,	258.9,
З,	0,	0.067,	0.98 <mark>,</mark>	1,	0.154291,	0.485324,	-0.860613,	-0.164344,	0.477369,	-0.863198,	-0.006,	0.509,	259.0,
4,	0,	0.100,	0.98 <mark>,</mark>	1,	0.152318,	0.481375,	-0.863179,	-0.173090,	0.476330,	-0.862061,	-0.012,	0.507,	259.1,
5,	0,	0.133,	0.98 <mark>,</mark>	1,	0.153508,	0.483944,	-0.861530,	-0.168420,	0.474387,	-0.864055,	-0.009,	0.507,	258.9,
6,	0,	0.166,	0.98 <mark>,</mark>	1,	0.167302,	0.487480,	-0.856956,	-0.166816,	0.482054,	-0.860114,	0.000,	0.514,	259.0, 2
7,	0,	0.200,	0.98 <mark>,</mark>	1,	0.172715,	0.471560,	-0.864755,	-0.166749,	0.485960,	-0.857927,	0.003,	0.507,	258.9, 2
8,	0,	0.233,	0.98 <mark>,</mark>	1,	0.158576,	0.474541,	-0.865832,	-0.146456,	0.484456,	-0.862469,	0.007,	0.507,	258.0, 2
9,	0,	0.266,	0.98 <mark>,</mark>	1,	0.164370,	0.481046,	-0.861149,	-0.159547,	0.486407,	-0.859042,	0.003,	0.512,	258.0, 2
10,	0,	0.300,	0.98,	1,	0.170122,	0.475289,	-0.863226,	-0.154423,	0.477503,	-0.864953,	0.009,	0.504,	257.8,
11,	0,	0.333,	0.98,	1,	0.170398,	0.473574,	-0.864114,	-0.140283,	0.483219,	-0.864187,	0.017,	0.506,	257.7,
12,	0,	0.366,	0.98,	1,	0.171272,	0.468305,	-0.866808,	-0.161096,	0.471278,	-0.867148,	0.006,	0.497,	257.2,
13,	0,	0.399,	0.98,	1,	0.171319,	0.456795,	-0.872919,	-0.161271,	0.467526,	-0.869144,	0.006,	0.488,	256.7,
14,	0,	0.433,	0.98,	1,	0.171955,	0.472245,	-0.864532,	-0.142391,	0.482240,	-0.864389,	0.017,	0.504,	256.4,
15,	0,	0.466,	0.98,	1,	0.179500,	0.474240,	-0.861903,	-0.146723,	0.477667,	-0.866203,	0.019,	0.503,	256.2,
16,	0,	0.499,	0.98,	1,	0.183287,	0.473235,	-0.861658,	-0.142830,	0.482837,	-0.863984,	0.023,	0.506,	256.1,
17,	0,	0.533,	0.98,	1,	0.178140,	0.474450,	-0.862069,	-0.133560,	0.488981,	-0.862009,	0.026,	0.510,	255.7,
18,	0,	0.566,	0.98,	1,	0.174425,	0.478418,	-0.860635,	-0.139020,	0.488504,	-0.861416,	0.021,	0.512,	255.3,
19,	0,	0.599,	0.98,	1,	0.171640,	0.476181,	-0.862433,	-0.155734,	0.476381,	-0.865337,	0.009,	0.504,	255.1,
20,	0,	0.632,	0.98,	1,	0.175253,	0.477866,	-0.860773,	-0.154496,	0.483662,	-0.861512,	0.012,	0.509,	255.0,
21,	0,	0.666,	0.98,	1,	0.180504,	0.477152,	-0.860084,	-0.152572,	0.479457,	-0.864200,	0.016,	0.507,	254.8,
22,	0,	0.699,	0.98,	1,	0.175610,	0.479423,	-0.859834,	-0.138994,	0.489909,	-0.860622,	0.021,	0.513,	254.9,
23,	0,	0.732,	0.98,	1,	0.176967,	0.472934,	-0.863143,	-0.153054,	0.478969,	-0.864386,	0.014,	0.504,	255.0,
24,	0,	0.766,	0.98,	1,	0.177460,	0.481628,	-0.858220,	-0.149103,	0.498052,	-0.854232,	0.017,	0.520,	255.2,
25,	0,	0.799,	0.98,	1,	0.170422,	0.487813,	-0.856151,	-0.154129,	0.493881,	-0.855760,	0.010,	0.521,	255.5,
26,	0,	0.832,	0.98,	1,	0.172349,	0.490304,	-0.854341,	-0.152962,	0.490870,	-0.857700,	0.011,	0.520,	256.2,
27,	0,	0.866,	0.98,	1,	0.169141,	0.485012,	-0.857995,	-0.144625,	0.494994,	-0.856776,	0.014,	0.519,	256.7,

Gaze, 56 eye landmarks

68 Facial Landmarks, 18 Action Units, 2 eyes'

Other Features

478 Mediapipe Landmarks

Photo Masked

Disgust

DeepLie Facial Expressions (total 7)

Video

Step 3: Convert to Statistical Embeddings

	0	1	2	3	4	5	6	•••	1427	1428	1429	1430	1431	1432	1433
0	0.628220	0.585478	-0.021724	0.617518	0.572269	-0.042757	0.621676	•••	0.001981	0.640676	0.541239	0.001970	0.650270	0.543611	0.001973
1	0.628009	0.585624	-0.021663	0.617510	0.572577	-0.042757	0.621563	•••	0.001979	0.640296	0.542018	0.001968	0.649334	0.544293	0.001970
2	0.627554	0.585871	-0.021660	0.617374	0.572803	-0.042769	0.621241	•••	0.002123	0.641028	0.542481	0.002113	0.649646	0.544645	0.002115
3	0.626945	0.586212	-0.021498	0.617005	0.572950	-0.042704	0.620718	•••	0.002077	0.639203	0.542973	0.002067	0.647669	0.545110	0.002069
4	0.626104	0.586403	-0.021498	0.616056	0.573038	-0.042702	0.619783	•••	0.001727	0.637685	0.543259	0.001717	0.646416	0.545432	0.001719
••	•••			•••		•••	•••	•••	•••	•••		•••	•••	•••	•••
521	0.625486	0.590213	-0.021346	0.615473	0.577408	-0.042215	0.619461	•••	0.000501	0.638121	0.545078	0.000491	0.646948	0.547548	0.000492
522	0.625438	0.590783	-0.020850	0.615435	0.578410	-0.042217	0.619446	•••	-0.000092	0.637960	0.545139	-0.000101	0.646833	0.547624	-0.000100
523	0.625128	0.591031	-0.020519	0.615129	0.578717	-0.042238	0.619133	•••	-0.000579	0.637564	0.545143	-0.000588	0.646569	0.547629	-0.000587
524	0.624463	0.591075	-0.020342	0.614362	0.578790	-0.042243	0.618375	•••	-0.000791	0.636464	0.545124	-0.000800	0.645539	0.547611	-0.000799
525	0.000070	0 500776	0.0000.00	0 64 36 60	0 570500	0.040045	0 647604			0 00000	0 544640		0 645000	0 547007	0.000705

136 x 11 = 1496 features

Step 4: Apply PCA

Ľ	0	1	2	3	4	5	6	7	8	9	10
0	-33.480877	-5.368075	6.939137	-2.811792	-6.280956	7.498868	1.223844	3.118128	4.616891	1.369401	-0.946723
1	-34.385876	-5.591050	4.876374	0.196208	-6.636379	4.670253	2.048193	-6.568414	4.869732	0.413672	-2.675267
2	-30.210544	-5.123522	1.580824	-1.249155	-1.099228	1.396236	1.004438	-1.945191	2.348769	-1.418723	-1.690945
3	-34.382739	-2.224694	7.015470	-1.340062	-2.178119	10.978499	-1.833982	-4.183350	5.659691	-0.803370	-3.424389
4	-34.569953	-0.570395	12.460204	-2.954755	9.110812	18.752028	-10.461954	-2.750856	-0.138756	0.911343	-1.352495
320	-14.499753	1.462785	0.233516	-5.151235	-6.260486	-4.381239	0.449432	6.791107	3.356487	-4.297751	-1.554691
321	-12.714052	-4.377924	-1.696009	-4.239537	2.676205	-3.348984	-0.748482	-1.524912	-0.148899	-1.866274	-1.506226
322	-13.364502	-2.867546	2.690253	2.818882	1.476687	-1.468402	-5.403065	3.332910	0.636667	-1.608022	0.660161
323	-13.461854	-0.713506	1.260010	-4.369032	-0.592522	-2.460078	-3.791880	4.430088	-0.997241	-3.354472	0.332586
324	-13.025185	-2.475010	2.835088	-4.447439	7.458357	2.222256	-8.135903	-0.719897	-0.784331	-1.858201	0.481672
[32	5 rows x 11	columns]	_								

Down to 11 features!

Audio

Step 1: Extract audio from video

- Using moviepy.editor
- Saving as wav files

Step 2: Extract denoised audio

- Using noisereduce
- Saving as new wav files

Noise and Denoised audio waveforms of a User

Audio

Step 3: Extract audio features

Features for Noise waveforms

• Using librosa and parselmouth • Total 18 features of varying dimensions • Get the mean value for each dimension • Normalize and save in a df

Features for De-noised waveforms

Audio

Step 4: Dimensionality Reduction

- Using PCA
- Normalize the values
- Save the new df along with truth labels.

PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	usernum	run	ruth
0.3565884195868340	0.31428812695337600	0.20893096887515700	0.354409220949523	0.18652481578884500	0.2811003257612250	0.3850417481625030	0.5560918129382020	0.6780761667874550	0.7582474905883730	0.4436708500343090	0	1	0
0.6653900899091070	0.5065298031504780	0.5296070284116260	0.4152051955349910	0.15164823840203400	0.24591107627125200	0.3059950101818420	0.5958016329401690	0.8473613976477100	0.6428338272716260	0.3694720077501210	0	2	0
0.5662026494266750	0.3806785894860090	0.21829680646033900	0.4614453178475810	0.3036362642432760	0.48297581371331700	0.43208145706035400	0.4213877103496990	0.7892140879720750	0.513877143942343	0.44524229150901300	0	3	0
0.5471616466276580	0.33009289407963500	0.2835637729689690	0.6387943215095100	0.3091860316414560	1.0	0.7592998793618940	0.4846360734489530	0.30639760988301500	0.5532122062143120	0.6474007661810810	0	4	0
0.5198656431696860	0.31146217015906900	0.13856350232351700	0.47455632581753600	0.3937405073200040	0.4453349638621760	0.4360784940230950	0.353628671886611	0.5646628295484870	0.3682325944095700	0.3827941177578940	0	5	1
0.5846281992486940	0.2813520772052210	0.1366728224732310	0.2636855337257330	0.28115593985822900	0.3675508148197260	0.5646095784504610	0.5362404035854540	0.7758118240482830	0.3061666536527180	0.4141574304346040	1	0	1
0.5194256263979070	0.34262432239641600	0.23880226794241800	0.4283839012331230	0.3656075607536190	0.5393257618460670	0.4077606766686450	0.5284278253306370	0.8677410323431770	0.2567730966191660	0.5284468663032770	1	1	0
0.47155579702313000	0.3063179705256300	0.12762467258511100	0.3048736779528260	0.3271926224568070	0.4507266939779670	0.4764016034551090	0.6340713156780560	0.7964518039948490	0.1883748696998950	0.5385219168604280	1	4	0
0.35846913227804600	0.3901258499218200	0.13374629864554000	0.1737834320000050	0.41787702423475900	0.3691307761566720	0.4239442073646480	0.4357521235938100	0.556319306196135	0.30325225936138600	0.562520815039449	1	5	1
0.46552289551726900	0.5275532780372670	0.3766745594882340	0.6372396936632510	0.267971338045578	0.4439666864265730	0.5813645601883060	0.2282034072587570	0.5610516788655860	0.5506544608298070	0.36923307549672900	10	2	1
0.41313718211932700	0.4653349303225280	0.47132795454697600	0.6274569897877240	0.31727819456429000	0.5436246920975980	0.4491226550947710	0.34753854010246900	0.38827923901086200	0.6087982234481890	0.4405018014725140	10	3	1
0.3503095583288230	0.64274928421437	0.4556876363566360	0.7082816683958980	0.32506692501155500	0.6289188077604010	0.45061418118675500	0.3186477317860680	0.5814206462178850	0.6911875627238830	0.43171679607855400	10	4	0

shape: 14 x 205

Input Modalities

Transcript: Aunty chooha!

ML Methodology

Our mode

Support Vector Classifier

- Support vectors similar expression/audio features
- Based on statistical embeddings
- Works well for small sample size

Random Forest Classifier

- Avoids overfitting
- Gaze and text have limited domain/vocabulary

Late Fusion technique

- Averages the output probabilities from every modality
- Different human behaviours are captured across each modality.

Challenges faced:

Challenge: Bag of Lies (primary dataset) was made accessible in March **Solution:** Worked with Court Trial dataset for initial feature extraction

Challenge: Limited number of samples in dataset for applying NN/LSTM **Solution:** Used other classifiers with similar baseline performance

Challenge: CUDA compatibility issues + server crashes **Solution:** Re-installed our operating systems

Results

		Set A - Audio + Video (all 325)						Set B - Audio + Video + Transcripts (205)					
Modalities	Model	1	2	3	4	5	Mean Accuracy	1	2	3	4	5	Mean Balanced Accuracy
	SVM (RBF)	0.6123542	0.6123542	0.6123542	0.6123542	0.6123542	0.6123542	0.5630272	0.5630272	0.5630272	0.5630272	0.5630272	0.563027211
Only Audio	Random Forest	0.5823181	0.5823181	0.5823181	0.5823181	0.5823181	0.5823181	0.5496939	0.5496939	0.5496939	0.5496939	0.5496939	0.5496939
57.	Gaussian NB	0.5715461	0.5715461	0.5715461	0.5715461	0.5715461	0.5715461	0.5728571	0.5728571	0.5728571	0.5728571	0.5728571	0.5728571
Only Video (2D Facial Landmarks +	Neural Network	0.5457524	0.5307761	0.5347784	0.5475778	0.5358122	0.5389394	0.556483	0.5475993	0.5654397	0.5543457	0.5467433	0.5541222
PCA)	SVM (Sigmoid)	0.5801175	0.5801175	0.5801175	0.5801175	0.5801175	0.5801175	0.567483	0.567483	0.567483	0.567483	0.567483	0.567483
TON	Random Forest	0.5381334	0.5147207	0.5135302	0.5144826	0.5416254	0.5244985	0.5412925	0.4894898	0.5035374	0.5336395	0.5098299	0.5155578
	Gaussian NB						0.6692517	0.6692517	0.6692517	0.6692517	0.6692517	0.6692517	
Only Transcripts	SVM (RBF)				NA			0.6577211	0.6577211	0.6577211	0.6577211	0.6577211	0.6577211
	Random Forest							0.7042177	0.6731293	0.6907823	0.7105102	0.7067347	0.6970748
	RF	0.6590641	0.6604927	0.6695187	0.6446774	0.6733282	0.6614162	0.5831633	0.5815986	0.5958844	0.5937415	0.5857823	0.588034
Only Gaze (averaged angle)	SVM (poly)	0.5641084	0.5641084	0.5641084	0.5641084	0.5641084	0.5641084	0.555102	0.555102	0.555102	0.555102	0.555102	0.555102
	KNN $(n = 15)$	0.6009946	0.6009946	0.6009946	0.6009946	0.6009946	0.6009946	0.5454422	0.5454422	0.5454422	0.5454422	0.5454422	0.5454422
Video + Audio	Early Fusion	0.5570367	0.5570367	0.5570367	0.5570367	0.5570367	0.5570367	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Video + Audio	Late Fusion	0.5931117	0.5842228	0.5845403	0.5776139	0.5921593	0.5863296	0.5535714	0.5535714	0.5535714	0.5535714	0.5535714	0.5535714
Video + Transcripts	Early Fusion	ΝA				0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429		
Video + Transcripts	Late Fusion	ha					0.580102	0.5683673	0.5748299	0.587585	0.5752041	0.5772177	
Video + Gaze	Early Fusion	0.5598938	0.5598938	0.5598938	0.5598938	0.5598938	0.5598938	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Video + Gaze	Late Fusion	0.6564667	0.6564667	0.6564667	0.6564667	0.6564667	0.6564667	0.5788776	0.5815306	0.5629592	0.6223469	0.6012925	0.5894014
Audio + Transcripts	Early Fusion				NA			0.5541497	0.5541497	0.5541497	0.5541497	0.5541497	0.5541497
Audio + Manscripts	Late Fusion				NA .			0.5466667	0.5663265	0.5606122	0.5663265	0.5642857	0.5608435
Audio + Gaze	Early Fusion	0.6579674	0.6579674	0.6579674	0.6579674	0.6579674	0.6579674	0.6097959	0.6097959	0.6097959	0.6097959	0.6097959	0.6097959
Audio + Gaze	Late Fusion	0.6455143	0.6383498	0.6697784	0.6775922	0.6432849	0.6549039	0.5977551	0.5822789	0.6010884	0.5902721	0.6147959	0.5972381
Gaze + Transcripts	Early Fusion				NA			0.5453741	0.5453741	0.5453741	0.5453741	0.5453741	0.5453741
Gaze + Transcripts	Late Fusion				NA			0.6445578	0.6068367	0.6136054	0.6240816	0850340136	0.6222704
Audio + Video + Transcripts	Early Fusion				NA			0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Audio + video + manscripts	Late Fusion				NA			0.5680272	0.5591837	0.5620748	0.5659864	0.5605442	0.5631633
Video + Gaze + Audio	Early Fusion	0.5598938	0.5598938	0.5598938	0.5598938	0.5598938	0.5598938	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Video + Gaze + Addio	Late Fusion	0.6748145	0.6592806	0.651878	0.6549948	0.6423758	0.6566687	0.6018707	0.6156122	0.6205442	0.6132313	0.5923129	0.6087143
Video + Gaze + Transcripts	Early Fusion				NA			0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Video + Gaze + Transcripts	Late Fusion				NA			0.604932	0.6105442	0.6126531	0.6153061	0.6060204	0.6098912
Audio + Gaze + Transcripts	Early Fusion	5			NA			0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Audio + Gaze + Transcripts	Late Fusion				INA			0.604932	0.6132653	0.6117347	0.6016667	0.6163265	0.609585
Audio + Video + Transcripts + Gaza	Early Fusion				NA			0.5471429	0.5471429	0.5471429	0.5471429	0.5471429	0.5471429
Audio + Video + Transcripts + Gaze	Late Fusion							0.5901361	0.5993197	0.579932	0.6061224	0.6061224	0.5963265

Different models tried with different modalities

Results

Modalities	Model	Set A (325 samples)	Set B (205 samples)
	SVM (rbf)	61.24%	56.30%
Only Audio	Random Forest	58.23%	54.97%
	GaussianNB	57.15%	57.27%
	Neural Network	53.89%	55.41%
Only Video	SVM (sigmoid)	58.01%	56.78%
	Random Forest	52.45%	51.56%
	Gaussian NB		66.93%
Only Text	SVM (RBF)	-	65.77%
	Random Forest		69.53%
	Random Forest	66.14%	58.80%
Only Gaze	SVM (poly)	56.41%	55.51%
	KNN $(n = 15)$	60.10%	54.54%
Video + Audio	Mean Fusion	58.64%	55.36%
Video + Transcripts	Mean Fusion	-	57.72%
Video + Gaze	Mean Fusion	65.64%	58.94%
Audio + Transcripts	Mean Fusion	-	56.08%
Audio + Gaze	Mean Fusion	65.80%	59.72%
Gaze + Transcripts	Mean Fusion	-	62.22%
Audio + Video + Transcripts	Mean Fusion	-	56.31%
Video + Gaze + Audio	Mean Fusion	65.67%	60.87%
Video + Gaze + Transcripts	Mean Fusion	-	60.99%
Audio + Gaze + Transcripts	Mean Fusion	-	60.968
All four	Mean Fusion	-	59.63%

Best performing models with late fusion

The eyes, chico...

they never lie.

Scarface (1983)

Results

Set B - LOGOCV Balanced Accuracy

- 40-60 class imbalance
- Highest accuracy: 69.53%
- No literature data available on Set B

Set A - LOGOCV Accuracy

- Highest accuracy: 66.14% (Gaze)
- On par with other research
- Does not use expensive equipments

Madality	Mathad	Averag	e Accuracy
Modality	Method	Set A	Set B
	Random Forest	58.71	-
Only EEG	EEG Net	54.25	-
111 21 - 111	MLP	53.79	-
Only Cage	Random Forest	61.70	57.11
Only Gaze	MLP	57.71	53.51
	LBP + SVM	55.21	53.25
Only Video	LBP + Random Forest	56.20	55.26
5.2.283 () () ()	LBP + MLP	54.22	49.90
Only Andia	Random Forest	53.24	54.89
Only Audio	KNN	53.22	56.22
EEG + Gaze		62.22	-
EEG + Audio		61.69	-
EEG + Video		60.20	-
Gaze + Audio		63.69	59.42
Gaze + Video	Score level fusion of best	62.19	62.71
Audio + Video	performing algorithms on various	60.68	58.24
Gaze + Video + EEG	modalities	62.70	-
Gaze + Audio + EEG		63.21	-
Audio + Video + EEG		63.18	-
Gaze + Video + Audio		64.69	60.09
All four		66.17	-

Bag-of-Lies 11-fold accuracy without EEG (Set A): **64.69**%

In Plaksha

To check for Academic disintegrity

We hope that you will uphold the highest standards of academic integrity and refrain from any behaviour that compromises these standards.

Best Wishes!

The Office of Academic Affairs

Can be used by the Disciplinary committee

To detect Substance consumption by students

Thank You:)

Bhai Tu Bindaas Jhooth Bol.

Mujhe Ghanta Farq Nahi Padta...